Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Molecules ; 26(24)2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1572566

ABSTRACT

This study demonstrates the inhibitory effect of 42 pyrimidonic pharmaceuticals (PPs) on the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) through molecular docking, molecular dynamics simulations, and free binding energies by means of molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) and molecular mechanics-generalized Born surface area (MM-GBSA). Of these tested PPs, 11 drugs approved by the US Food and Drug Administration showed an excellent binding affinity to the catalytic residues of 3CLpro of His41 and Cys145: uracil mustard, cytarabine, floxuridine, trifluridine, stavudine, lamivudine, zalcitabine, telbivudine, tipiracil, citicoline, and uridine triacetate. Their percentage of residues involved in binding at the active sites ranged from 56 to 100, and their binding affinities were in the range from -4.6 ± 0.14 to -7.0 ± 0.19 kcal/mol. The molecular dynamics as determined by a 200 ns simulation run of solvated docked complexes confirmed the stability of PP conformations that bound to the catalytic dyad and the active sites of 3CLpro. The free energy of binding also demonstrates the stability of the PP-3CLpro complexes. Citicoline and uridine triacetate showed free binding energies of -25.53 and -7.07 kcal/mol, respectively. Therefore, I recommend that they be repurposed for the fight against COVID-19, following proper experimental and clinical validation.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Repositioning/methods , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Acetates/chemistry , Acetates/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cytidine Diphosphate Choline/chemistry , Cytidine Diphosphate Choline/pharmacology , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Uridine/analogs & derivatives , Uridine/chemistry , Uridine/pharmacology
2.
Mol Ther ; 30(2): 963-974, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1525991

ABSTRACT

Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).


Subject(s)
Acetates/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Cyclopropanes/pharmacology , Quinolines/pharmacology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Sulfides/pharmacology , A549 Cells , Acetates/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cyclopropanes/chemistry , Drug Repositioning , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neutralization Tests , Protein Conformation , Quinolines/chemistry , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Sulfides/chemistry , Vero Cells , Virus Internalization/drug effects
3.
PLoS One ; 16(1): e0244885, 2021.
Article in English | MEDLINE | ID: covidwho-1251754

ABSTRACT

Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.


Subject(s)
Aspergillus oryzae/metabolism , Influenza A virus/drug effects , Oryza/chemistry , Oryza/microbiology , Plant Extracts/pharmacology , Saccharomyces cerevisiae/metabolism , Water/chemistry , Acetates/chemistry , Animals , Antiviral Agents/pharmacology , Dogs , Fermentation , Influenza A virus/growth & development , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Microbial Viability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL